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6.1 Kinetics of Particle Growth 

It was established in Chapter 5 that c and kpCp are of similar magnitude in many RAFT-

containing systems and that zero-one kinetics therefore become inapplicable (see also 

Chapter 4); therefore, it is either pseudo-bulk kinetics are applicable or, alternatively, the 

kinetics may be described by neither the pseudo-bulk nor zero-one limits. In Chapter 4, 

an overview of the zero-one and pseudo-bulk limits for the kinetics of particle growth 

was given, showing that, in the case where (ρ/c ≈ 1 or k/c ≈ 1) and (ρ/c v 1 and k/c v 1), 

the kinetics are not well-described by either of these limits. Moreover, it will be shown in 

Chapter 7 that all three of the Smith–Ewart parameters (ρ, k and c) are of similar 

magnitude. Thus, it is necessary to consider particle growth kinetics more closely.  

In dealing with the exit of radicals from particles, their fate in the aqueous-phase 

and the additional entry and termination processes, it is instructive to examine the roots of 

both the zero-one and pseudo-bulk limits. The common roots for these kinetic schemes 

are the seemingly simple Smith–Ewart equations. 

6.2 The Smith–Ewart Equations 

In an emulsion polymerization in which particle formation does not occur and termination 

is chain-length independent, the population of particles with i radicals, Ni, is determined 

by the rate coefficients for the processes that change the number of radicals in a particle 

and the initial conditions of the system. In particular, intra-particle termination is 

described by the pseudo-first-order rate coefficient for the destruction of two radicals, c, 

radical entry by a first-order rate coefficient, ρ, and the loss of a single radical from a 

particle by the first-order rate coefficient, k. Physical processes that may correspond to ρ, 

k and c are the entry of an aqueous phase radical into a particle (ρ), the desorption of a 

monomeric radical formed by a transfer to monomer reaction (k) and termination (c). 

These processes are shown for an Ni particle in Fig. 6.1. 
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Figure 6.1: A schematic of the events changing the number of radicals in the 
particles containing i radicals. 

The processes shown in Fig. 6.1 may be reduced to a time-evolution equation for 

the population of Ni-type particles, the infinite set of which comprise the Smith–Ewart 

equations:1 

 
dNi
dt  = ρ[ ]Ni−1 − Ni  + k[ ](i + 1)Ni+1 − iNi  + c[ ](i + 2)(i + 1)Ni+2 − i(i − 1)Ni

   (6.1) 

Note that, since a particle with i radicals in it may have any one of the i radicals exit 

(through whatever mechanism is involved in that exit), the rate coefficient for exit per 

particle (as opposed to per radical) is also proportional to i; similarly, the rate coefficient 

for termination per particle is proportional to i(i − 1). 

While these equations provide insight into the population balances of radicals in 

the particles and their importance should not be underestimated, they provide no direct 

means of understanding the kinetics of the system. The work of Hawkett et al.2 provided 

a suitable means of solving these equations using eigenvectors. The zero-one limit 

emerged from the Smith–Ewart equations by truncating the infinite series of equations in 

such a way that if a radical entered an N1 particle, pseudo-instantaneous termination 

would result not in an N2 particle but in an N0 particle.3 An alternate closure relation was 

found by Ballard et al.,4 assuming that n2––
 − n– = n–2 (the case if the Ni follow a Poisson 

distribution5), leading to pseudo-bulk kinetics. 
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It is recognized that the treatment of emulsion polymerization kinetics in terms of 

the Smith–Ewart equations is a simplification that removes the chain-length dependence 

of the termination reaction. Deviations from the Smith–Ewart equations have been 

observed,6,7 and in general the chain-length dependence of termination cannot be ignored. 

However, as will be discussed in Section 6.2.2, under certain circumstances the Smith–

Ewart equations are applicable; moreover, some of the conclusions based on a chain-

length independent treatment should be semi-quantitatively applicable to systems where 

this chain-length independence assumption is inadmissible. 

Consideration of the Smith–Ewart equations and the origins of the zero-one and 

pseudo-bulk limits is a necessary step in developing a simplified model for 

RAFT/emulsion systems. In Section 6.3, a method whereby average Smith–Ewart 

parameters may be calculated from the full chain-length dependent kinetics is presented. 

6.2.1 Exited Radicals and the Smith–Ewart Equations 

Incorporating the fate of the exited radicals into the original Smith–Ewart equations 

(Eq. 6.1) can often be done trivially by rewriting the Smith–Ewart equations in terms of 

ρt (where the subscript denotes “total) instead of ρ. A fate parameter α ∈ [−1,1] may then 

be introduced, making ρt a function of the true, initiator derived radical flux ρ and the 

average number of radicals per particle, n–:4,8 

 ρt = ρ + αkn–  (6.2) 

However, the use of the fate parameter is problematic in that, for fates other than the 

limiting cases of α ∈ {−1, 0, 1}, α itself is a function of n–. For this reason, the treatment 

here will be confined to a brief overview of the use of α when it falls into one of these 

limits; other cases require the full treatment of the aqueous-phase kinetics to estimate the 

fate of the exited radicals in the aqueous phase. 
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The fate of the exited radicals in zero-one kinetics gives five separate limits 

depending on the efficiency of the initiator, whether or not complete aqueous-phase 

termination occurs and whether a re-entering radical will stay in a particle that it re-enters 

or desorb once more.5,9 The limiting values of α (i.e. −1, 0, 1) correspond to the following 

fates (showing the exited radical as E ), which in the case of zero-one kinetics have been 

ascribed names as shown:5,9 

• α = +1:  

o complete re-entry (and no subsequent re-escape) of the exited species 

(Limit 2a). 

• α = 0:  

o complete aqueous-phase homotermination (e.g. E  + E ) of the exited species 

(Limit 1a), or 

o complete aqueous-phase termination (e.g. E  + IMi  or E  + E ) with an 

initiator of low efficiency (Limit 1c), or 

o continual re-entry and re-escape of the exited species until termination in a 

particle (e.g. E  + P ) occurs (Limit 2b). 

• α = −1:  

o complete aqueous-phase heterotermination (e.g. E  + IMi ) of the exited 

species with an initiator of otherwise high-efficiency (Limit 1b). 

While there is great aesthetic appeal in using the fate parameter α, there are 

difficulties in its application. In addition to α itself being a function of n– except in the 

limiting cases above, ρt may now be a function of n–, making the differential equations 

considerably more difficult to solve. Given these difficulties with the use of α, it will not 

be used in this work except for the purposes of mathematical convenience and to 

highlight the particular form of Eq. 6.2 being used.  
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In an uncompartmentalized system, the complete re-entry of the exited species 

(with no re-escape) is equivalent to α = 1 in Eq. 6.2; this approximation makes the system 

somewhat easier to solve, giving the familiar pseudo-bulk equation:4 

 
dn–

dt  = ρ − 2cn–2  (6.3) 

It must be noted that, for the purposes of clarity, the formulation here is slightly 

different from that shown elsewhere. In particular, there is often confusion between 

whether ρ is ρt or ρi (initiator-derived radicals), especially when considering conditions 

such as ρ/c à 1. Here and in the subsequent treatment of the Smith–Ewart equations and 

the zero-one and pseudo-bulk limits, ρ will always be used to represent only the entry of 

initiator-derived radicals, with the re-entry of other radicals being denoted with alternate 

subscripts where appropriate. 

6.2.2 Full Treatment of Polymer Kinetics 

The occurrence of desorption requires taking into account the fate of exited free radicals, 

which can be implemented by extending the Smith–Ewart equations to differentiate 

particles containing one or more monomeric radicals (which can desorb) from particles 

containing the same number of longer radicals (which cannot desorb).9 It is also essential 

to note that the Smith–Ewart equations do not take chain-length dependent (CLD) 

termination into account; therefore, they are only semi-quantitative for all except zero-

one systems and systems where termination is independent of chain length (e.g. where 

termination by reaction-diffusion is dominant).10  

When the effects of CLD termination are taken into account, one can still apply 

the Smith–Ewart equations, but in general all the rate coefficients (ρ, k and c) will not be 

constant, but will depend on the instantaneous radical distribution and the number of 

radicals in each particle.10 Explicitly, c is a function of the number of radicals in the 

particle, i, and also of the overall instantaneous distributions of all the Gi(N) (chain-length 

distributions of growing chains within that particle), the instantaneous distributions of all 
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the Di(N) (chain-length distributions of dormant chains within that particle) and ρ is a 

function of the overall number of monomeric radicals within all particles. In general, 

these dependencies can only be found by a solution of the more complete system where 

explicit account is taken of the distributions of the lengths of each chain in each particle. 

This forms an extremely complex set of hierarchical equations replacing Eq. 6.1:10 

 
dNi
dt  = ρ i−1(N)[ ]Ni−1 − Ni  + k[ ](i + 1)Ni+1 − iNi    

+ ci+2( )Gi+2(N), Di+2(N) [ ](i + 2)(i + 1)Ni+2 − ci( )Gi(N), Di(N) (i − 1)Ni (6.4) 

In Section 6.3, a method is described whereby the “instantaneous” Smith–Ewart rate 

coefficients can be determined from the full CLD kinetics for the direct interpretation of 

experimental data. 

6.2.3 Solution of the Smith–Ewart Equations 

Along with the pseudo-bulk limit of the Smith–Ewart equations, Ballard et al.4 also 

reported a simple method of finding approximate solutions to the full Smith–Ewart 

equations (Eq. 6.1) using a recursive approach. A brief summary of this process is as 

follows. 

Ballard et al.4 made use of a physical limit of the Ni particles as their closure 

relation:   

 lim
i→∞

 Ni = 0  (6.5) 

Thus, by selecting a sufficiently large i = n and setting all Ni = 0 for i > n, the infinite set 

of equations described by Eq. 6.1 is reduced to a more manageable set of n equations. The 

accuracy of this artificial truncation procedure was verified by Ballard et al.4 against 

alternative solution methods presented by Stockmayer11 and O’Toole.12 

Solving the truncated set of equations in steady state then yields the following set 

of equations that are readily solved starting with Nn set to an arbitrary value. Strictly, the 
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value selected for Nn will determine the normalization of the population distribution but 

this is readily renormalized after all calculations have been performed; however, care 

must be taken to prevent numerical overflows in the computation of the other Ni. 

 Nn−1 = 
1

 ρ  { }[ ]ρ + nk + n(n − 1)c Nn  (6.6) 

 Nn−2 = 
1

 ρ  { }[ ]ρ + (n − 1)k + (n − 1)(n − 2)c Nn−1 − [ ]ρ + nk Nn   (6.7) 

 Ni = 
1

 ρ  { }[ ]ρ + (i + 1)k + i(i + 1)c Ni+1 − (i + 2)kNi+2 − (i + 3)(i + 2)cNi+3   (6.8) 

A minimum value of n required for a reasonable approximation for the population 

distribution was estimated by Ballard et al.4 to be 5(n– + 1), where n– is estimated from the 

steady-state solution of Eq. 6.3. (In the case of a zero-one system where the true value of 

n– is around ½, the value of n so calculated is around 5, which is sufficient for the zero-one 

system.) 

It may be noted from Eq. 6.1 that the population distribution (and hence n–) is 

dependent only on the values of ρ/c and k/c; these three parameters may thus be reduced 

to two when considering the value of n– that describes a system. Repeating the above 

process for the calculation of n– over a range of values of ρ/c and k/c produces a surface of 

n– values that describes various systems, shown in Fig. 6.2. Note the plateau in the surface 

caused by the highly compartmentalized systems that follow zero-one kinetics. 

In the case where exiting radicals have some kinetic effect after exit (i.e. α ≠ 0 in 

the vernacular of Eq. 6.2), their effect must also be incorporated into this solution 

method. In the limiting cases where α itself is not a function of n– (i.e. −1, 1), this may be 

done in a straightforward (albeit computationally inefficient) method by first preparing an 

estimate for n– using Eq. 6.6 to 6.8 and the truncation method described above, then using 

Eq. 6.2 to determine a new value of ρ to be used once more in Eq. 6.6 to 6.8.4 This 

procedure may be repeated until the value of n– is of sufficient accuracy. In practice, this 

technique converges quite quickly to the actual value of n–. In the case of complete 
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re-entry and no re-escape (which corresponds to the limiting case α = 1), the surface of n– 

vs ρ/c and k/c is shown in Fig. 6.3. 
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Figure 6.2: The 3D surface and contour plot of n– vs ρ/c and k/c described by the 
Smith–Ewart equations in steady state where exited radicals have no subsequent 
kinetic effect. Note the zero-one plateau at n– = ½. 
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Figure 6.3: The 3D surface and contour plot of n– vs ρ/c and k/c described by the 
Smith–Ewart equations in steady state with complete re-entry and no subsequent 
re-escape. 
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6.2.4 Limits of the Smith–Ewart Equations 

The applicability of the zero-one and pseudo-bulk limits to the Smith–Ewart equations 

has already been discussed, with various conditions in terms of the relative magnitudes of 

ρ, k and c being devised. In particular, it was noted that, in the case where (ρ/c ≈ 1 or 

k/c ≈ 1) and (ρ/c v 1 and k/c v 1), neither of these limits would appear to hold. 

However, it is possible that, while neither limit may be rigorously derived under such 

conditions, the values for n– that result from one or other of these limits may still provide 

useful approximations to the value of n–. 

As it has previously been shown that the limit of complete re-entry and no 

re-escape is suitable for the emulsion polymerization of styrene,5,13 the discussion 

presented here will be restricted to this limit. It is noted that the treatment presented here 

is for the steady state n– of the systems. The error in the value of n– calculated by the 

various approximations to the Smith–Ewart equations presented here is, thus, only one 

facet of these approximations; the accuracy of these limits in estimating the relaxation 

kinetics and the molecular weight distributions is an area for further work outside the 

scope of this study. 

6.2.4.1 Zero-One Kinetics 

In the case of zero-one kinetics, complete re-entry with minimal re-escape corresponds to 

Limit 2a. This limit has the steady state solution for n–:5,9 

 n– = − 
ρ
2k + 

1
2 












ρ

2k

2

 + 2
ρ
2k

½
 (6.9) 

It is thus possible to map out n– in the ρ/c and k/c space as before, as well as looking at the 

relative error between the zero-one approximation and the numerical solution of the 

Smith–Ewart equations. Fig. 6.4 shows the surface described by the (Limit 2a) zero-one 

equations. Note that the surface described in this way has the same plateau as that shown 

by the Smith–Ewart equations in Fig. 6.3, but that, due to the exaggerated 
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compartmentalization of the “zero-one” assumption, as ρ/c increases, the system remains 

at n– = ½. 

A contour-plot comparison of the relative error between the zero-one solution and 

the numerical solution to the full Smith–Ewart equations presented above is shown in 

Fig. 6.5. When ρ/c á 1 and k/c á 1, this error is quite small; however, when either 

ρ/c à 1 or k/c à 1, this error becomes more substantial. 
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Figure 6.4: The 3D surface and contour plot of n– vs ρ/c and k/c described by the 
zero-one equations with complete re-entry and minimal re-escape. 
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Figure 6.5: Percentage error in the calculation of n– using zero-one kinetics as a 
function of ρ/c and k/c with complete re-entry and minimal re-escape. 
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6.2.4.2 Pseudo-Bulk Kinetics 

In the case of an uncompartmentalized system, complete re-entry and minimal 

re-escape corresponds to pseudo-bulk kinetics.4 The differential equation describing the 

time-evolution of n– (Eq. 6.3) has the steady state solution: 

 n– = 



ρ

 2c 

½
 (6.10) 

Once more, it is possible to map out n– and the error in n– from pseudo-bulk calculations as 

a function of ρ/c and k/c. These are shown in Fig. 6.6 and 6.7, showing that, for either 

ρ/c à 1 or k/c à 1, the correspondence between the pseudo-bulk approximation and the 

numerical solution to the Smith–Ewart equations is quite good. 
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Figure 6.6: The 3D surface and contour plot of n– vs ρ/c and k/c described by the 
pseudo-bulk equation. 
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Figure 6.7: Percentage error in the calculation of n– using pseudo-bulk kinetics as 
a function of ρ/c and k/c. 

6.2.4.3 Zero-One-Two Kinetics 

It would be remiss not to briefly mention the work of Lichti et al.6 and zero-one-two 

kinetics in this discussion. While this limit was principally designed to be used with 

chain-length independent termination rate coefficients to generate molecular weight 

distributions for zero-one systems, it provides an alternate solution of the Smith–Ewart 

equations through a different closure relation.  It also provides a means of expressing the 

chain-length dependence of termination, which, although very cumbersome, is rigorous. 

Moreover, this limit (with CLD termination) is expected to provide better quantitative 

accuracy for the difficult region in which the conditions for neither zero-one nor pseudo-

bulk limits are satisfied. The zero-one-two equations are obtained from the full Smith–

Ewart equations using a closure relation: entry of a radical into an N2 particle produces an 

N1 particle rather than an N3 particle.  
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Figure 6.8: The 3D surface and contour plot of n– vs ρ/c and k/c described by the 
zero-one-two equations with complete re-entry and minimal re-escape. 
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Figure 6.9: Percentage error in the calculation of n– using zero-one-two kinetics 
as a function of ρ/c and k/c with complete re-entry and minimal re-escape. 

These kinetics are considerably more difficult to solve than those of the zero-one 

or pseudo-bulk limits; moreover, once ρ becomes a function of n– (i.e. exited radicals have 

subsequent kinetic effects, when α ≠ 0), it becomes simpler to solve these equations using 

the iterative technique described above for use with the Smith–Ewart equations. 

Unfortunately, despite the added complexity of the zero-one-two system, the 

approximation to the complete Smith–Ewart equations is only marginally better than for 

the zero-one and pseudo-bulk equations in the critical (ρ/c ≈ 1 or k/c ≈ 1) and (ρ/c v 1 
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and k/c v 1) regions, as shown in Fig. 6.8 and 6.9. While it would appear that the use of 

zero-one-two kinetics are unjustified in calculating steady-state values of n– with chain-

length independent termination, the zero-one-two model will be used as a basis for 

calculating suitable average values of the pseudo-first-order rate coefficient for 

termination in Section 6.3. 

6.2.4.4 Approximations to the Smith–Ewart Equations 

In this section, the scope of the discussion is once more limited to zero-one and pseudo-

bulk kinetics, as Fig. 6.9 suggests that the added complexity of zero-one-two kinetics 

would appear largely unjustified for steady-state calculations. It is possible to construct a 

diagram of the best approximation to n–, calculated from the limit (zero-one or pseudo-

bulk) with the lowest (absolute) percentage error in the calculation of n–. This is shown as 

a contour plot in Fig. 6.10, with contours of constant percentage error in n–. The region 

ρ/c á 1 and k/c á 1 is well described by zero-one kinetics, while the region ρ/c à 1 or 

k/c à 1 is well described by pseudo-bulk kinetics.  
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Figure 6.10: The best fit to n– over the (ρ/c, k/c)-space with complete re-entry and 
minimal re-escape, taking n– from either zero-one or pseudo-bulk kinetics 
(selecting on basis of minimum relative error). Contours are of constant 
percentage error in n–. The thick line indicates the boundary between zero-one and 
pseudo-bulk kinetics being the best fit. 
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The regions for which pseudo-bulk and zero-one kinetics are valid do not overlap. 

Fig. 6.5 and 6.7 indicate that there is significant error (20−30%) in the region between 

zero-one and pseudo-bulk kinetics. This is borne out in Fig. 6.10; the region where 

(ρ/c ≈ 1 or k/c ≈ 1) and (ρ/c v 1 and k/c v 1) may be described by either zero-one or 

pseudo-bulk kinetics only to an error of up to 30% in n–. Therefore, great care must be 

taken in interpreting the modeling result of either zero-one or pseudo-bulk kinetics in this 

region. 

6.3 Chain-Length Dependence and Smith–Ewart Kinetics 

The Smith–Ewart equations1 have been used to describe emulsion polymerization kinetics 

in many systems, as they account for the compartmentalization of the radicals in the 

system. In the formalism developed by Smith and Ewart,1 intra-particle termination is 

described by the (average) chain-length independent, pseudo-first-order rate coefficient 

for the destruction of two radicals, c. The treatment of emulsion polymerization kinetics 

in terms of the Smith–Ewart equations is, thus, a simplification that removes the chain-

length dependence of the termination reaction.  

Deviations from the Smith–Ewart equations due to CLD termination were 

described by Lichti et al.6 and Adams et al.7 Ignoring the chain-length dependence of 

termination is valid for zero-one systems and for pseudo-bulk systems at high weight-

fractions of polymer, wp, when the dominant termination mode becomes reaction-

diffusion termination, which is independent of chain length. As noted above, some of the 

conclusions based on a chain-length independent treatment should be semi-quantitatively 

applicable to systems where this chain-length independence assumption is inadmissible. 

As noted earlier, the occurrence of desorption requires taking into account the fate 

of exited free radicals, which can be implemented by extending these equations to 

differentiate particles containing one or more monomeric radicals (which can desorb) 

from particles containing the same number of longer radicals (which cannot desorb).9  
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When both CLD termination and radical desorption are taken into account, one 

can still apply the Smith–Ewart equations, but in general all the rate coefficients (ρ, k and 

c) will not be constant. Rather, they will depend on the instantaneous radical distribution 

and on the number of radicals in each particle.10 Explicitly, c is a function of the number 

of radicals in the particle, i, and also of the overall instantaneous distributions of all the 

Gi(N) (chain-length distributions of growing chains within that particle) and ρ is a 

function of the overall number of monomeric radicals within all particles. These 

dependencies can in general only be found by a solution of the more complete system 

where explicit account is taken of the distributions of the lengths of each chain in each 

particle.10 

Various limits and approximations to the Smith–Ewart equations have been 

proposed, with the aim of variously describing the rate of polymerization or the molecular 

weight distribution of the polymer formed. Commonly used limits have included the zero-

one limit3,5 (where entry of a radical into a particle already containing a growing radical 

leads to pseudo-instantaneous termination) and the pseudo-bulk limit4 (where there is no 

compartmentalization and the system polymerizes like the “equivalent” bulk system). The 

zero-one-two model,14 where entry of a third radical into a particle leads to pseudo-

instantaneous termination, has also been used to account for the molecular weight 

distributions. 

In a compartmentalized system such as an emulsion polymerization, the effect of 

CLD termination is difficult to include, with the generalized kinetic scheme resulting in 

significant complexity. Even in the zero-one-two simplification with CLD termination, 

the full expressions include coupled partial integrodifferential equations with three 

independent variables (time and the length of the two radicals) that are generally 

intractable. 

The application of the Smith–Ewart equations to systems in which CLD 

termination important is thus fraught with difficulties. Here, a method of taking account 
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of the chain-length dependence of termination will be demonstrated to generate 

appropriate chain-length independent (average) parameters that may be used in the 

Smith–Ewart equations. The method presented here will firstly be shown for the zero-

one-two limit14of the Smith–Ewart equations, with a generalization to systems containing 

more radicals being subsequently presented. 

6.3.1 Overall Strategy 

In the case of zero-one-two kinetics, it is first shown that the rate of loss of particles with 

two radicals in them (N2 particles) is determined by the time-dependent pseudo-first-order 

rate coefficient for termination. Suitable physical models may be used to analytically 

describe termination or alternate numerical methods implemented. Once the loss of N2 

particles has been described, it is shown that this may be related to an average 

termination rate coefficient that is applicable to the quasi-steady-state in which the 

calculations were performed. 

The notation used here is that of the distinguished particle equations of Lichti et 

al.14 Here, the overall reaction time since the steady state was reached is denoted t, while 

the time since the first (distinguished) radical entered the particle under consideration is 

t′. The time for which two (distinguished) radicals have been in a particle is denoted t′′ 

and the proportion of particles that have two distinguished radicals in them is thus 

N2′′(t, t′, t′′) or simply N2′′(t′′). The pseudo-first-order rate coefficient for termination 

depends on the weight fraction of polymer in the system, wp(t), and the lengths of the two 

radicals in the particle; it is thus written as c(t, t′, t′′) or simply c(t′′). The objective of the 

derivations presented here is to offer methods for obtaining c–(t), the time-dependent rate 

coefficient for termination averaged over the current population distribution of radicals to 

account for CLD termination. 
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6.3.2 Average Termination Rate Coefficient in Zero-One-Two Kinetics 

In a system where zero-one-two kinetics are applicable (e.g. ρ, k d c), the primary means 

of loss of N2′′ particles is termination between the two radicals. The following relation is 

thus found for the population balance N2′′(t′′):14 

 
dN2′′(t′′)

dt′′  = − 2c(t′′)N2′′(t′′)  (6.11) 

Solution of this differential equation gives N2′′(t′′) as a function of c(t′′): 

 N2′′(t′′) = C1(t) exp( )−2 ∫ c(t′′) dt′′   (6.12) 

where C1(t) is a constant of integration determined using the value of N2′′(0); N2′′(t′′) is a 

monotonic decreasing function. Methods by which Eq. 6.12 may be solved are presented 

in subsequent sections. 

It will now be shown that this result for N2′′(t′′) may be related back to the zero-

one-two limit14 of the Smith–Ewart equations,1 where intra-particle termination is 

described by the t-dependent pseudo-first-order rate coefficient for the destruction of two 

radicals, c = c–(t), averaged over t′′ to account for CLD termination. Rewriting Eq. 6.11 in 

terms of c–(t), one has: 

 
dN2′′(t′′)

dt′′  = − 2c–(t)N2′′(t′′)  (6.13) 

where c–(t) is independent of t′′. This expression is integrated over t′′ from t′′ = 0 to the 

limit as t′′ → ∞. Noting that the limit as t′′ → ∞ of N2′′(t′′) is 0 (eventually all radicals 

must terminate), it is found that: 

 c–(t) = N2′′(0) 








2 ⌡⌠
0

∞

N2′′(t′′) dt′′
 −1

  (6.14) 

To obtain values for c–(t), Eq. 6.12 must now be solved. In some cases, this may be 

done analytically, as will be shown in the next section, while in other cases it is more 

convenient to use numerical simulations to estimate this quantity. 
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6.3.2.1 Population Integral 

It has been established experimentally15,16 and through theoretical arguments17 that the 

rate coefficient for termination between an m-meric and n-meric radical, kmn
t , is 

determined by the mutual diffusion coefficient of the two radicals. In the case of the 

termination of a long chain and a short chain, this diffusion coefficient is (to a good 

approximation) that of the short chain, with the diffusion of the long chain making an 

insignificant contribution to the mutual diffusion of the chain ends.17 If the short chain is 

the m-meric chain, the termination rate coefficient, kmn
t , may be written in terms of a 

Smoluchowski diffusion reaction:17 

 kmn
t  ≈ 4πDmpmnσNA (6.15) 

where Dm is the diffusion coefficient of the m-meric radical, pmn the probability of 

reaction occurring during a collision (for radical-radical termination reactions, pmn = ¼ 

due to spin multiplicity, except at high conversion18,19) and σ is the interaction radius (for 

styrene,20 σ ≈ 0.7 nm). 

Since c(t′′) is the pseudo-first-order rate coefficient for termination per radical, it 

may be written in terms of the concentration of m-meric radical in the particle, 1/NAVs, 

where Vs is the swollen volume of the particle: 

 c(t′′) = kmn
t (t′′)/NAVs (6.16) 

Experimental studies of diffusion and termination have indicated that a power law 

relationship between the diffusion coefficient and the length of the short chain may be 

appropriate.16,21 One may then write: 

 Dm(wp) = D1(wp) m−β(wp) (6.17) 

where D1(wp) is the diffusion coefficient of the monomer in the polymer matrix and β(wp) 

is the scaling exponent. (It is noted that, in other work, α has been used as the exponent 
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for the chain-length dependence;22 for clarity, β is used here to differentiate from the fate 

parameter described in Section 6.2.1.)  

Both D1 and β are dependent on the weight fraction of polymer, wp, in the system, 

with previous studies providing empirical relations for these quantities; in many cases 

(such as in a γ-relaxation experiment), the dependence of D1 and β on wp can be neglected 

as the experiment is conducted over a relatively narrow range of values of wp. Estimates 

for D1 have been published for various monomers21,23 and expressions for β have been 

found for systems below c*,16 and also well above c**.21 

Following the notation of Lichti et al.,14 the length of the entering radical may be 

expressed as a function of the time since entry, t′′. However, the length of the radical is 

not simply proportional to t′′, as the radical already has a length z (where z is the critical 

degree of polymerization for entry24) on entry. It is convenient to introduce a parameter 

tz = z/(kpCp), giving the following expression for m: 

 m = [ ]t′′ + tz  kpCp (6.18) 

where kp is the second-order rate coefficient for propagation and Cp is the concentration 

of monomer in the particle. 

It is then possible to express c(t′′) as a function of Dm, noting that c(t′′) is also a 

function of t due to the dependence on wp: 

 c(t′′) = c0(t) [ ]t′′ + tz
−β(t) (6.19) 

where 

 c0(t) = 4πpmnσ Vs
−1D1(t)[ ]kpCp

−β(t) (6.20) 

In considering the solution of Eq. 6.12 and then subsequently Eq. 6.14, it is 

necessary to break the solution into different cases according to the value of β. Physically 

reasonable values of β are [0,2], with β = 0 indicating no chain-length dependence and 
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β = 2 giving the reptation limit.25 In the cases detailed below where Eq. 6.14 is not 

convergent, a more suitable model for c(t′′) must be chosen; in particular, once reaction 

diffusion (where chain ends move by propagation) provides a significant contribution to 

the diffusion of the radicals and when transfer to monomer is significant, the simple 

scaling law of Eq. 6.19 is inapplicable. 

Case 0 < β < 1: 

Returning to Eq. 6.12, it is possible to analytically evaluate this expression given 

the power law relation for c(t′′) shown in Eq. 6.19: 

 N2′′(t′′) = C1(t) N2′′(0) exp






 −2c0(t) 

 1−β(t)  [ ]t′′ + tz
1−β(t)   (6.21) 

with C1(t) being evaluated using N2′′(0): 

 C1(t) = exp




 2c0(t) 

 1−β(t)  [ ]tz
1−β(t)   (6.22) 

Evaluation of Eq. 6.14 is once again possible analytically, given the power law 

dependence assumed here: 

 c–(t) = 
 [ ]β(t)−1  [ ] 2c0(t) 

1−β(t)

 1
1−β(t)

2C1(t)Γ( )1
1−β(t) , 

 2c0(t) tz
1−α(t) 

1−β(t)

   (6.23) 

where Γ(b, z) is the incomplete Γ-function: 

 Γ(b, z) = ⌡⌠
z

∞

 tb−1e−t dt  (6.24) 

Case β = 1: 

The integral shown in Eq. 6.12 takes quite a different form when β = 1, giving: 

 N2′′(t′′) = C1(t) [ ]t′′ + tz
−2c0(t)   (6.25) 
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with C1(t) given by: 

 C1(t) = N2′′(0) [ ]tz
−2c0(t)  (6.26) 

It is now possible to evaluate c–(t) using Eq. 6.14 in some circumstances, 

depending on the value of c0(t). In the case where β = 1, Eq. 6.20 gives c0(t) ≈ c1L/kpCp, 

where c1L is the pseudo-first-order rate coefficient for termination of the monomeric 

radical under the short-long assumption used here. When c0(t) > ½, it is found that: 

 c–(t) = 
C1(t)

 (2c0(t)−1)tz
2c0(t)−1 

 (6.27) 

However, for c0(t) < ½, the integral in Eq. 6.14 is divergent giving the unphysical result 

c–(t) = 0. The value of c0(t) may cross the value of ½ during the course of a reaction: the 

ratio between termination (i.e. diffusion) and propagation rate coefficients determines the 

behavior of the system with c0 ∝ D1/(kpVs). Larger particles also tend to decrease c0(t) as 

termination is less likely. 

Case 1 < β < 2: 

In the case where β > 1, N2′′(t′′) and C1(t) are given by Eq. 6.21 and 6.22; however, the 

integral over all t′′ to find c(t′′) (Eq. 6.14) is divergent. In this case, it is not possible to 

calculate c–(t) from a simple power law expression for c(t′′). The divergence of the 

integral is unphysical, but easily understood given the assumptions of the model for 

termination used here. Note also that the work of Griffiths et al.21 indicates that emulsion 

polymerizations would normally have β > 1, making this shortcoming quite significant. 

6.3.2.2 Population Integral with Reaction Diffusion and Transfer to Monomer 

An alternate model for c(t′′) incorporating both reaction diffusion and chain transfer to 

monomer permits the calculation of N2′′(t′′). With physically reasonable assumptions, 

these two additions add equivalent complexity to the mathematics of the system; hence, it 

is convenient to discuss them both together. However, the expression obtained for N2′′(t′′) 
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with either reaction-diffusion or transfer to monomer does not permit c–(t) to be obtained 

analytically. Recourse to numerical methods is quite feasible in this case. 

Incorporating reaction diffusion, the model for the diffusion of the terminating 

radicals is as follows. The mutual diffusion coefficient may be constructed from the 

center-of-mass diffusion coefficients for each species, Dcom
m  and Dcom

n , and the reaction-

diffusion coefficient for each chain, Drd
m and Drd

n :20 

 Dmn = Dcom
m  + Dcom

n  + Drd
m + Drd

n  (6.28) 

As before, the center-of-mass diffusion coefficient for the longer n-meric species 

may be neglected. Additionally, the reaction-diffusion term will be independent of chain-

length,20 giving: 

 Dm = Dcom
m  + 2Drd  (6.29) 

where Drd is given by: 

 Drd = kpCpa2/6  (6.30) 

Here, a is the root-mean-square end-to-end distance per square root of the number 

of monomer units in the polymer chain. Values for a for various monomers are given by 

Russell et al.20 

The rigorous inclusion of transfer to monomer is quite difficult. However, it was 

shown by Clay et al.22 that the pseudo-first-order rate coefficient for transfer to monomer 

was of similar magnitude to the pseudo-first-order average rate coefficient for 

termination; moreover, approximately equal numbers of chains were stopped by transfer 

and termination.22 One may conclude that the most probable fate for a monomeric radical 

is termination with another radical, since the termination rate coefficient for a monomeric 

radical is significantly greater than that of a longer chain, as noted in the experiments of 

Adams et al.7 Working with this physically reasonable assumption that all monomeric 
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radicals terminate, a lower limit on the pseudo-first-order termination rate coefficient 

c(t′′) is the transfer frequency, ktrCp. 

Once again, using a power law relationship for the chain-length dependence of the 

center-of-mass diffusion, an expression for c(t′′) may be obtained: 

 c(t′′) = c0(t) [ ]t′′ + tz
−β(t) + crd + ctrM (6.31) 

where c0(t) is defined as before (Eq. 6.20). The contribution of reaction-diffusion to 

termination is crd(t) (pmn being dependent26 on wp and Cp being dependent on t): 

 crd(t) = 
4πpmnσ kpCpa2

3Vs
 (6.32) 

The contribution of transfer to monomer to termination, ctrM(t), is t-dependent as the 

transfer reaction has been shown to have a dependence on wp at high conversion22,26 and 

Cp varies throughout Interval III: 

 ctrM(t) = ktrCp (6.33) 

As before, this expression may be integrated to give an expression for N2′′(t′′). For 

example, in the case where β ≠ 1, 

 N2′′(t′′) = C1(t) exp






 −2c0(t) 

 1−β(t)  [ ]t′′ + tz
1−β(t) − 2crdt′′ − 2ctrMt′′   (6.34) 

with C1(t) being the same as defined in Eq. 6.22. 

In general, it is not possible to integrate N2′′(t′′) as given in Eq. 6.34 over all t′′, 

thus c–(t) cannot be obtained analytically from Eq. 6.19 and 6.34. However, numerical 

computation of the integral over all N2′′(t′′) is relatively inexpensive, permitting this 

method to be used to calculate a value of c–(t) that suitably takes account of the chain-

length dependence of termination in the Smith–Ewart equations.  
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6.3.2.3 Probabilistic Method 

Analytic expressions for the probability that radicals will propagate j or more steps in a 

two radical environment were used by Maeder and Gilbert27 to estimate the applicability 

of zero-one kinetics to the polymerization of butyl acrylate. More recently, Monte Carlo 

models were used by Prescott28 to estimate radical lifetimes in RAFT-mediated emulsion 

polymerizations (although this technique could be equally well used with non-RAFT 

systems). The inclusion of reaction-diffusion and transfer to monomer is quite simple in 

these models, permitting the kinetics of the system to be more accurately modeled. 

The probability that the two radicals in a particle will consume j or more monomer 

units is denoted by Pj(t), noting that this will be a function of wp(t). It will first be shown 

that the area under the Pj(t) vs j curves, constructed according to the method of Prescott28 

(or alternatively Pj(t) vs 2j if using the method of Maeder and Gilbert27), provides a 

measure of the average number of monomer units consumed before termination in a 

particle, ∆m
––(t), and that this, in turn, permits the evaluation of c–(t). 

Consider a Pj(t) vs j curve generated by sequentially assessing N test-particles, 

each originally containing 2 radicals. By definition, Pj(t) is the proportion of systems that 

consumed j or more monomer units before a termination reaction occurred. Thus, NPj is 

equal to the number of systems that consumed j or more monomer units and N(Pj − Pj+1) 

is the number of systems that consumed precisely j monomer units. The (number) average 

number of monomer units consumed in a system, ∆m
––, is then given by: 

 ∆m
–– = 

N(P1 − P2) + 2N(P2 − P3) + 3N(P3 − P4) + …
 N  (6.35) 

which simplifies to: 

 ∆m
–– = ∑

j ≥ 0
Pj (6.36) 

This may be reduced to an integral form through a discrete-to-continuous approximation 

for j: 
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 ∆m
–– = ⌡⌠

0

∞

Pj dj (6.37) 

It will now be shown that ∆m
––(t) may be related back to c–(t). The time taken for j 

monomer units to be consumed in a particle with two radicals, t′′, is: 

 t′′ = j/2kpCp (6.38) 

Changing the variable of integration in Eq. 6.37 from j to t′′ using Eq. 6.38 yields the 

following integral over time for the number of monomer units consumed in the system: 

 ∆m
––(t) = 2kpCp ⌡⌠

0

∞

N2′′(t′′) dt′′  (6.39) 

In the probabilistic formulation described here, N2′′(0) = 1. This result for ∆m
––(t) 

provides a method for evaluating c–(t) using Eq. 6.14, without the need to solve the 

differential equation shown in Eq. 6.12:  

 c–(t) = 
kpCp 

 ∆m
––(t) 

 (6.40) 

6.3.3 Average Termination Rate Coefficients in Generalized 

Smith-Ewart Systems  

The above method described for zero-one-two kinetics may now be extended to 

generalized Smith–Ewart kinetics. Restricting the discussion once more to the 

termination reaction between two radicals, the following relation is found for the 

population balance Ni: 

 
dNi
dt  = − i(i − 1)c–(t)Ni

  (6.41) 

where c–(t) is once again the effective chain-length independent average coefficient for 

second-order radical loss (which is invariant over the timescale of the lifetime of one 

radical). Integrating over time from t = 0 to the limit as t → ∞ (and writing Ni(t=0) as N0
i ) 

gives: 
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 −N0
i  = − i(i − 1)c–(t)⌡⌠

0

∞

Ni dt  (6.42) 

Rearranging yields: 

 c–(t) = 
N0

i  

 i(i − 1) ⌡⌠
0

∞

Ni(t) dt
 (6.43) 

where the integral in Eq. 6.43 is ultimately a function of the chain-length dependent 

c(t, t′, t′′, i), as previously described for the zero-one-two case. However, c(t′′) will also 

now be a function of the chain lengths of the other i−2 radicals not under consideration. It 

is reasonable to approximate the termination reaction as occurring between the most 

recently entered radical and one other radical, in which case the mutual diffusion 

coefficient will be dominated by the diffusion of the shortest species and c(t′′) may be 

estimated from t′′ alone. Under such conditions, it is possible to calculate c–(t) from 

Eq. 6.43 using the previously illustrated analytic or numeric methods. 

To make use of the probabilistic method for calculating c–(t) shown above, the 

time coordinate must be related to the number of monomer units consumed using the 

frequency of propagation (including the number of radicals present, i), ikpCp. This yields 

the required transform: 

 t = 
j

 ikpCp 
  (6.44) 

 
dt
dj = 

1
 ikpCp 

  (6.45) 

which may be used as a change of variable for the integral w.r.t. t (Eq. 6.43): 

 c–(t) = 
 kpCp N

0
i  

 (i − 1) ⌡⌠
0

∞

Ni(j) dj
 (6.46) 
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As before, one sees that Pj,i = Ni(j)/N
0
i , where Pj,i is the probability Pj, now also 

dependent on i. The average number of monomer units consumed in a particle before a 

termination reaction occurs is a function of i and denoted ∆m,i
–– ; Eq. 6.37 then provides the 

necessary relation to permit c–(t) to be calculated from probabilistic data, such as a Monte 

Carlo simulation, as follows: 

 c–(t) = 
kpCp 

 (i − 1)∆m,i
––  

 (6.47) 

6.4 Principles of γ-Relaxation 

As it is now feasible to extract suitable average Smith–Ewart parameters from the full 

chain-length dependent kinetic scheme, it is useful to briefly revisit the principles of the 

experimental technique available for extracting these kinetic parameters. 

As discussed in Chapter 1, dilatometry measures the volume change of the 

reaction at frequent intervals, allowing conversion vs time data to be obtained from these 

volume changes using the difference in density between the monomer and polymer. From 

these data, a steady state value of n– may be obtained, providing one kinetic parameter for 

the system. 

In a γ-relaxation, the system is permitted to come to a (quasi-) steady state before 

the dilatometer is removed from the proximity of the γ-source, thus ceasing external 

initiation (see Chapter 1 for a schematic of the 60Co shielding and elevator mechanism).29 

Once external initiation has been switched off, the system will move to a new steady 

state; the new value of n– and the time-constant for the relaxation provide two additional 

kinetic parameters, in theory permitting three physical kinetic parameters to be 

determined from the data. In practice, the relaxation is dependent on the kinetic model 

followed (e.g. the assumed fate of the exited radicals) and thus additional information is 

required to completely specify the behavior of the system.5 
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While UV radiation is sufficient to initiate bulk and solution polymerization 

experiments, an emulsion polymerization has significant turbidity, preventing uniform 

initiation throughout the latex with UV radiation. In contrast, γ-initiation is able to pass 

through the latex with little attenuation, producing radicals homogeneously throughout 

the reaction mixture.5 

Previous well-documented uses of γ-initiation in RAFT-mediated polymerizations 

include verifying that a polymerization follows RAFT-mediated kinetics rather than 

“iniferter” kinetics30 and investigations of radical storage effects in the RAFT 

mechanism.31 It has also been used for the creation of novel materials by initiating 

grafting to substrates.32 Kinetic investigations using γ-relaxations have been performed on 

emulsion polymerizations of monomers including styrene,29 methyl methacrylate,33 and 

vinyl acetate.34 

The numerical treatment of the dilatometry data with reference to possible 

mechanisms for radical loss is described in Chapter 7, with additional information about 

the mass-balance and model-independent kinetics used to treat the raw data contained in 

the Appendices. 
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